HIGHLIGHTS ✓ Solution

Solution to all questions

- ✓ solutions are put in way the student is expected to reproduce in the exam
- taught in the class room the same way as the solution are put up here. That makes the student to easily go through the solution Εī prepare hím/herself when he/she sits back to revise and recall the topic at any given point of time.
- / lastly, if student due to some unavoidable reasons, has missed the lecture, will not have to run here and there to update his/her notes.
- however class room lectures are must for easy passage of understanding & learning the minuest details of the given topic

PAPER - I

CIRCLE

CONICS - CIRCLE

- ✓ Standard form of the circle : $x^2 + y^2 = r^2$
- ✓ Given centre C = (h,k) & radius = r , equation of the circle can be generated using Center Radius form (x - h)² + (y - k)² = r²
- ✓ Given $A(x_1,y_2)$, $B(x_2,y_2)$ are the ends of the diameter, equation of the circle can be generated using

Diameter Form $(x - x_1)(x - x_2) + (y - y_1)(y - y_2) = 0$

 \checkmark In general , equation of the circle

 $x^{2} + y^{2} + 2gx + 2fy + c = 0$, where

$$C = (-g, -f) R = \sqrt{g^2 + f^2 - c}$$

Q1.

- 01. find the equation of the circle with center (2, -3) and passing through (-1, 2) ans : $x^2 + y^2 - 4x + 6y - 21 = 0$
- 02. find the equation of the circle with center (1, -2) and passing through (5, 3) ans : $x^2 + y^2 - 2x + 4y - 36 = 0$
- 03. find the equation of the circle with center (-2, 3) and passing through (1, 7) ans : $x^2 + y^2 + 4x - 6y - 12 = 0$

04. find the equation of the circle with center (1/2, 3/2) and radius 3 ans : $2x^2 + 2y^2 - 2x - 6y - 13 = 0$

Q2.

- 01. find equation of circle with radius 5 and concentric with circle $x^2 + y^2 + 4x 6y = 0$ ans : $x^2 + y^2 + 4x - 6y - 12 = 0$
- 02. find equation of circle with radius 5 and concentric with circle $x^2 + y^2 6x 4y 3 = 0$ ans : $x^2 + y^2 - 6x - 4y - 12 = 0$
- 03. find equ. of circle concentric with $x^2 + y^2 2x 6y 7 = 0$ and area 616 sq. units ans : $x^2 + y^2 - 2x - 6y - 186 = 0$
- 04. find equ. of circle concentric with $x^2 + y^2 6x + 60 = 0$ and circumference 4π ans : $x^2 + y^2 6x + 5 = 0$ (MAR 2016)

- 05. Find centre and radius of the circle : $2x^2 + 2y^2 2x 8y 13 = 0$ (MAR 2014) ans : $C(\frac{1}{2}, 2)$, $r = \sqrt{43}/2$
- 06. Find centre and radius of the circle : $3x^2 + 3y^2 6x + 4y 42 = 0$ ans : $C(1, \frac{-2}{3})$, $r = \sqrt{22}/3$
- 07. find the center and the radius of the circle : (x 3)(x 5) + (y 1)(y 7) = 0ans : C(4, 4), $r = \sqrt{10}$

Q3.

- 01. find equation of the circle having centre (7,-2) and touching the x axis ans : $x^2 + y^2 - 14x + 4y + 49 = 0$
- 02. find equation of the circle having centre (-5,2) and touching the y axis ans : $x^2 + y^2 + 10x - 4y + 4 = 0$
- 03. find equation of the circle having radius = 1 and touching the x axis at (-4,0) ans : $x^2 + y^2 + 8x \pm 2y + 16 = 0$

Q4.

01. Find circle touching both the axes and having radius 7

ans: $x^2 + y^2 \pm 14x \pm 14y + 49 = 0$

- 02. find equation of the circle touching both axes and passing through (1,2) ans : $x^2 + y^2 - 2x - 2y + 1 = 0$, $x^2 + y^2 - 10x - 10y + 25 = 0$
- 03. find equation of the circle touching both axes and passing through (-9,8) ans: $x^2 + y^2 + 10x - 10y + 25 = 0$, $x^2 + y^2 + 58x - 58y + 841 = 0$

Q5.

- 01. Find equation of circle with center (4,3) & touching 5x 12y 10 = 0ans : $x^2 + y^2 - 8x - 6y + 21 = 0$
- 02. Find equation of circle with center (3,1) & touching 8x 15y + 25 = 0ans : $x^2 + y^2 - 6x - 2y + 6 = 0$

Q6.

01. Find equation of circle passing through (4, 6); (-3, 5) & (5, -1)

ans : $x^2 + y^2 - 2x - 4y - 20 = 0$

- 02. Find equation of circle passing through (4, 1); (-3, -6) & (-2, 1) (MAR 2013) ans: $x^2 + y^2 - 2x + 6y - 15 = 0$
- 03. Find equation of circle passing through (4 , 1) ; (6 , 5) & whose center lies on 4x + y = 16ans : $x^2 + y^2 - 6x - 8y + 15 = 0$
- 04. Find equation of circle passing through (1, -4); (5, 2) & whose center lies on x 2y + 9 = 0 ans: $x^2 + y^2 + 6x - 6y - 47 = 0$

Q7.

- 01. find equation of circle passing through (1, 9) & touching 3x + 4y + 6 = 0 at (-2, 0) ans : $x^2 + y^2 - 2x - 8y - 8 = 0$
- 02. find equation of circle passing through (-1, -3) & touching 4x + 3y 12 = 0 at (3, 0) ans : $x^2 + y^2 - 2x + 3y - 3 = 0$

Q8.

01. Find equation of circle with center (3, -1) and which cuts off a chord of length 6 on line 2x - 5y + 18 = 0

ans: $x^2 + y^2 - 6x + 2y - 28 = 0$

02. Find equation of circle with center (1, 4) and which cuts off a chord of length 6 on line 3x + 4y + 1 = 0 (MAR 2014)

ans: $x^2 + y^2 - 2x - 8y - 8 = 0$

- 03. Find the length of intercept made by circle $x^2 + y^2 2x 8y 8 = 0$ on the line 3x + 4y + 1 = 0ans : 6
- 04. Find the length of intercept made by circle $x^2 + y^2 6x + 4y 12 = 0$ on the line 4x 3y + 2 = 0ans: 6

MARCH - 2015

line 2x - y + 6 = 0 meets the circle $x^2 + y^2 - 2x - 12 = 0$ at A and B. Find the equation of circle on AB as diameter

MARCH - 2017

Find equation of circle passing through point of intersection of the lines x + 3y = 0 and 2x - 7y = 0and whose centre is the point of intersection of the lines x + y + 1 = 0 and x - 2y + 4 = 0

SOLUTION SET

- 01. find the equation of the circle with center (2, -3) and passing through (-1, 2)SOLUTION
 - $\frac{\text{STEP 1}:}{r} = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ $= \sqrt{(2 + 1)^2 + (-3 2)^2}$ $= \sqrt{9 + 25}$ $= \sqrt{34}$ $\frac{\text{STEP 2}:}{(x h)^2 + (y k)^2} = r^2$ $(x 2)^2 + (y + 3)^2 = (\sqrt{34})^2$ $x^2 4x + 4 + y^2 + 6y + 9 = 34$ $x^2 + y^2 4x + 6y + 13 34 = 0$ $x^2 + y^2 4x + 6y 21 = 0 \qquad \text{...... equation of the circle}$
- 02. find the equation of the circle with center (1 , -2) and passing through (5 , 3)

SOLUTION

STEP 2 :

$$r = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
$$= \sqrt{(1 - 5)^2 + (-2 - 3)^2}$$
$$= \sqrt{16 + 25}$$
$$= \sqrt{41}$$

 $C(1,-2) , r = \sqrt{41}$ $(x - h)^{2} + (y - k)^{2} = r^{2}$ $(x - 1)^{2} + (y + 2)^{2} = (\sqrt{41})^{2}$ $x^{2} - 2x + 1 + y^{2} + 4y + 4 = 41$ $x^{2} + y^{2} - 2x + 4y + 5 - 41 = 0$ $x^{2} + y^{2} - 2x + 4y - 36 = 0 \qquad \text{.......} equation of the circle$

03. find the equation of the circle with center (-2, 3) and passing through (1, 7) **SOLUTION**

<u>STEP 1</u>: $r = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ $= \sqrt{(-2 - 1)^2 + (3 - 7)^2}$ $= \sqrt{9 + 16}$ $= \sqrt{25} = 5$

STEP 2 :

$$C(-2,3) , r = 5$$

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

$$(x + 2)^{2} + (y - 3)^{2} = (5)^{2}$$

$$x^{2} + 4x + 4 + y^{2} - 6y + 9 = 25$$

$$x^{2} + y^{2} + 4x - 6y + 13 - 25 = 0$$

$$x^{2} + y^{2} + 4x - 6y - 12 = 0 \qquad \text{.......} equation of the circle}$$

04. find the equation of the circle with center (1/2, 3/2) and radius 3

SOLUTION

STEP 1:

$$C(1/2, 3/2), r = 3$$

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

$$\left(x - \frac{1}{2}\right)^{2} + \left(y - \frac{3}{2}\right)^{2} = 3^{2}$$

$$\left(\frac{2x - 1}{2}\right)^{2} + \left(\frac{2y - 3}{2}\right)^{2} = 9$$

$$\frac{4x^{2} - 4x + 1}{4} + \frac{4y^{2} - 12y + 9}{4} = 9$$

$$4x^{2} + 4y^{2} - 4x - 12y + 10 = 36$$

$$4x^{2} + 4y^{2} - 4x - 12y - 26 = 0$$

$$2x^{2} + 2y^{2} - 2x - 6y - 13 = 0$$
 equation of the circle

Q2.

01. find equation of circle with radius 5 and concentric with circle $x^2 + y^2 + 4x - 6y = 0$ **SOLUTION**

<u>STEP 1 :</u>	$x^2 + y^2 + 4x - 6y = 0$				
	On comparing with				
	$x^2 + y^2 + 2gx + 2fy + c = 0$				
	2g = 4; $2f = -6$				
	g = 2; $f = -3$; $c = 0$				
	$C \equiv (-g, -f)$				
	\equiv $(-2, 3)$				
STEP 2 :	C(-2,3), $r = 5$				
	$(x - h)^2 + (y - k)^2 = r^2$				
	$(x + 2)^2 + (y - 3)^2 = (5)^2$				
	$x^2 + 4x + 4 + y^2 - 6y + 9 = 25$				
	$x^2 + y^2 + 4x - 6y + 13 - 25 = 0$				
	$x^{2} + y^{2} + 4x - 6y - 12 = 0$ equation of the circle				

02. find equation of circle with radius 5 and concentric with circle $x^2 + y^2 - 6x - 4y - 3 = 0$ SOLUTION

STEP 1 :	$x^2 + y^2 - 6x - 4y$	x - 3 = 0			
	On comparing with				
	$x^{2} + y^{2} + 2gx + 2fy + c = 0$				
	2g = -6; $2f = -4$				
	g = -3; $f = -2$; $c = 0$				
	$C \equiv (-g, -f)$				
	≡ (3,2)				
STEP 2 :		C(3,2) , $r = 5$			
		$(x - h)^2 + (y - k)^2 = r^2$			
		$(x - 3)^2 + (y - 2)^2 = (5)^2$			
		$x^2 - 6x + 9 + y^2 - 4y + 4 = 25$			
		$x^2 + y^2 - 6x - 4y + 13 - 25 = 0$			
		$x^{2} + y^{2} - 6x - 4y - 12 = 0$ equation of the circle			

- 03. find equ. of circle concentric with $x^2 + y^2 2x 6y 7 = 0$ and area 616 sq. units **SOLUTION**
 - STEP 1:
 $x^2 + y^2 2x 6y 7 = 0$ STEP 2:
 area = 616

 On comparing with
 $\pi r^2 = 616$ $\pi r^2 = 616$
 $x^2 + y^2 + 2gx + 2fy + c = 0$ $r^2 = \frac{616}{\pi}$

 2g = -2;
 2f = -6 $r^2 = \frac{616 \times 7}{22}$

 g = -1;
 f = -3;
 c = 0

 C = (-g, -f) = (1,3) r = 14

STEP 3 :	C(1,3) , r = 14
	$(x - h)^2 + (y - k)^2 = r^2$
	$(x - 1)^2 + (y - 3)^2 = (14)^2$
	$x^2 - 2x + 1 + y^2 - 6y + 9 = 196$
	$x^2 + y^2 - 2x - 6y + 10 - 196 = 0$
	$x^{2} + y^{2} - 2x - 6y - 186 = 0$ equation of the circle

04. find equ. of circle concentric with $x^2 + y^2 - 6x + 60 = 0$ and circumference is 4π

SOLUTION	STEP 1 $x^2 + y^2 - 6x + 60 = 0$			
	On comparing with	STEP 2		
	$x^2 + y^2 + 2gx + 2fy + c = 0$	circumference	=	4π
	2g = -6; $2f = 0$; $c = -11/3$	2πr	=	4π
	g = -3; $f = 0$; $c = -11/3$	r	=	2
	C = (-g, -f) = (3, 0)			
	STEP 3 : $C(3,0)$, $r = 2$			
	$(x - h)^2 + (y - k)^2 = r^2$			
	$(x - 3)^2 + (y - 0)^2 = 2^2$			
	$x^2 - 6x + 9 + y^2 = 4$			
	$x^2 + y^2 - 6x + 5 = 0$			

05. Find centre and radius of the circle : $2x^2 + 2y^2 - 2x - 8y - 13 = 0$ SOLUTION

> $2x^{2} + 2y^{2} - 2x - 8y - 13 = 0$ $x^{2} + y^{2} - x - 4y - 13 = 0$ 2 On comparing with $x^{2} + y^{2} + 2gx + 2fy + c = 0$ 2g = -1 ; 2f = -4 ; c = -13/2
> g = -1 ; f = -2 ; c = -13/2
> C = (-g, -f)
> R = \sqrt{g^{2} + f^{2} - c}
> = \left(\frac{1}{2}, 2\right)
> R = \sqrt{g^{2} + f^{2} - c}
> = \left(\frac{1}{4}, 2\right)
> = \sqrt{\frac{1 + 16 + 26}{4}} = \sqrt{\frac{43}{2}}

06. Find centre and radius of the circle : $3x^2 + 3y^2 - 6x + 4y - 3 = 0$ SOLUTION

 $3x^{2} + 3y^{2} - 6x + 4y - 3 = 0$ $x^{2} + y^{2} - 2x + \frac{4y}{3} - 1 = 0$ On comparing with $x^{2} + y^{2} + 2gx + 2fy + c = 0$ $2g = -2 ; 2f = \frac{4}{3} ; c = -1$ $g = -1 ; f = -\frac{2}{3} ; c = -1$ $C = (-g, -f) \qquad R = \sqrt{g^{2} + f^{2} - c}$ $= \left(1, -\frac{2}{3}\right) \qquad R = \sqrt{g^{2} + f^{2} - c}$ $= \sqrt{1 + \frac{4}{9} + 1}$ $= \sqrt{\frac{9 + 4 + 9}{4}}$ $= \sqrt{\frac{22}{3}}$

07. find the center and the radius of the circle : (x - 3)(x - 5) + (y - 1)(y - 7) = 0

$$(x - 3) (x - 5) + (y - 1) (y - 7) = 0$$

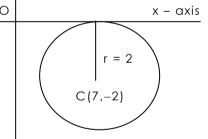
$$x^{2} - 8x + 15 + y^{2} - 8y + 7 = 0$$

$$x^{2} + y^{2} - 8x - 8y + 22 = 0$$
On comparing with
$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$

$$2g = -8 ; 2f = -8 ; c = 22$$

$$g = -4 ; f = -4 ; c = 22$$

$$C = (-g, -f) \qquad R = \sqrt{g^{2} + f^{2} - c}$$


$$= (4, 4) \qquad = \sqrt{16 + 16 - 22}$$

$$= \sqrt{10}$$

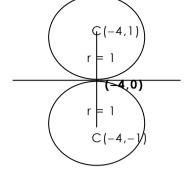
Q3.

01. find equation of the circle having centre (7,-2) and touching the x – axis **SOLUTION**

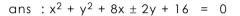
r = 2 (REFER DIAGRAM) C(7,-2) , r = 2 $(x - h)^2 + (y - k)^2 = r^2$ $(x - 7)^2 + (y + 2)^2 = (2)^2$ $x^2 - 14x + 49 + y^2 + 4y + 4 = 4$ $x^2 + y^2 - 14x + 4y + 49 = 0$ equation of the circle

y – axis

0


02. find equation of the circle having centre (-5,2) and touching the y - axis **SOLUTION**

r = 5 (REFER DIAGRAM) C(-5, 2), r = 5 $(x - h)^2 + (y - k)^2 = r^2$ $(x + 5)^2 + (y - 2)^2 = (5)^2$ $x^2 + 10x + 25 + y^2 - 4y + 4 = 25$


 $x^{2} + y^{2} + 10x - 4y + 4 = 0$ equation of the circle

03. find equation of the circle having radius = 1 and touching the x - axis at (-4,0)SOLUTION

CIRCLE 1 C(-4,1), r = 1 $(x - h)^2 + (y - k)^2 = r^2$ $(x + 4)^2 + (y - 1)^2 = 1$ $x^{2} + 8x + 16 + y^{2} - 2y + 1 = 1$ $x^2 + y^2 + 8x - 2y + 16 = 0$

CIRCLE 2 C(-4,-1), r = 1 $(x - h)^2 + (y - k)^2 = r^2$ $(x + 4)^2 + (y + 1)^2 = 1$ $x^{2} + 8x + 16 + y^{2} + 2y + 1 = 1$ $x^{2} + y^{2} + 8x + 2y + 16 = 0$ ans $: x^{2} + y^{2} + 8x \pm 2y + 16 = 0$

Q4.

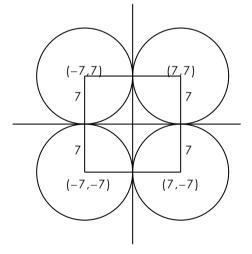
01. Find circle touching both the axes and having radius 7 SOLUTION Ilsing: $(x - b)^2 + (y - b)^2 - r^2$

Using:
$$(x - n)^2 + (y - k)^2 = r^2$$

CIRCLE 1 $C(7,7), r = 7$
 $(x - 7)^2 + (y - 7)^2 = 7^2$
 $x^2 + y^2 - 14x - 14y + 49 = 0$

CIRCLE 2 C(-7,7), r = 7 $(x + 7)^2 + (y - 7)^2 = 7^2$ $x^{2} + y^{2} + 14x - 14y + 49 = 0$

$$\frac{\text{CIRCLE 3}}{(x + 7)^2} + \frac{(y + 7)^2}{(y + 7)^2} = \frac{7^2}{7^2}$$


$$x^2 + y^2 + \frac{14x}{14y} + \frac{14y}{9} = 0$$

CIRCLE 4

$$C(7,-7), r = 7$$

$$(x - 7)^{2} + (y + 7)^{2} = 7^{2}$$

$$x^{2} + y^{2} - 14x + 14y + 49 = 0$$

ans:
$$x^2 + y^2 \pm 14x \pm 14y + 49 = 0$$

02. find equation of the circle touching both axes and passing through (1,2) **SOLUTION**

$\frac{\text{STEP 1}}{:} CP = r$	
$CP^2 = r^2$	
$(r - 1)^2 + (r - 2)^2 = r^2$	
$r^2 - 2r + 1 + r^2 - 4r + 4 = r^2$	r C(r, r)
$r^2 - 6r + 5 = 0$	
(r - 1)(r - 5) = 0	P (1,2)
r = 1 ; r = 5	
STEP 2 : r = 1 ; C(1,1)	r = 5 ; C(5,5)

$(x - h)^2 + (y - k)^2 = r^2$	$(x - h)^2 + (y - k)^2 = r^2$
$(x - 1)^2 + (y - 1)^2 = 1$	$(x - 5)^2 + (y - 5)^2 = 25$
$x^2 - 2x + 1 + y^2 - 2y + 1 = 1$	$x^2 - 10x + 25 + y^2 - 10y + 25 = 25$
$x^2 + y^2 - 2x - 2y + 1 = 0$	$x^2 + y^2 - 10x - 10y + 25 = 0$

03. find equation of the circle touching both axes and passing through (-9,8)

SOLUTION

STEP 1:
$$CP = r$$

 $CP^2 = r^2$
 $(-r + 9)^2 + (r - 8)^2 = r^2$
 $r^2 - 18r + 81 + r^2 - 16r + 64 = r^2$
 $r^2 - 34r + 145 = 0$
 $(r - 5)(r - 29) = 0$
 $r = 5$; $r = 29$

STEP 2:
$$r = 5$$
; $C(-5,5)$ $r = 29$ $(x - h)^2$ + $(y - k)^2$ = r^2 $(x - h)^2$ $(x + 5)^2$ + $(y - 5)^2$ = 25 $(x + 29)^2$ $x^2 + 10x + 25 + y^2 - 10y + 25 = 25$ $x^2 + 58$ $x^2 + y^2 + 10x - 10y + 25 = 0$ $x^2 + y^2$

$$r = 29 ; C(-29,29)$$

$$(x - h)^{2} + (y - k)^{2} = r^{2}$$

$$(x + 29)^{2} + (y - 29)^{2} = 841$$

$$x^{2} + 58x + 841 + y^{2} - 58y + 841 = 841$$

$$x^{2} + y^{2} + 58x - 58y + 841 = 0$$

Q5.

01. Find equation of circle with center (4,3) & touching 5x - 12y - 10 = 0

SOLUTION

STEP 1:
$$r = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

$$= \left| \frac{5(4) - 12(3) - 10}{\sqrt{5^2 + 12^2}} \right|$$

$$= \left| \frac{20 - 36 - 10}{\sqrt{169}} \right|$$

$$= \left| \frac{-26}{13} \right|$$

$$= 2$$

02. Find equation of circle with center (3,1) & touching 8x - 15y + 25 = 0

STEP 1:
$$r = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

$$= \left| \frac{8(3) - 15(1) + 25}{\sqrt{8^2 + 15^2}} \right|$$

$$= \left| \frac{24 - 15 + 25}{\sqrt{289}} \right|$$

$$= \left| \frac{34}{17} \right|$$

$$= 2$$

Q6.

01. Find equation of circle passing through (4, 6); (-3, 5) & (5, -1)SOLUTION P(4,6) STEP 1 . CP = CQ $CP^2 = CQ^2$ R(5, -1)Q(-3, 5) $(h - 4)^{2} + (k - 6)^{2} = (h + 3)^{2} + (k - 5)^{2}$ $h^{2} - 8h + 16 + k^{2} - 12k + 36 = h^{2} + 6h + 9 + k^{2} - 10k + 25$ -8h - 12k + 52 = 6h - 10k + 34= 14h + 2k 18 9 STEP 2 : CP = CR $CP^2 = CR^2$ $(h - 4)^{2} + (k - 6)^{2} = (h - 5)^{2} + (k + 1)^{2}$ $h^2 - 8h + 16 + k^2 - 12k + 36 = h^2 - 10h + 25 + k^2 + 2k + 1$ -8h - 12k + 52 = -10h + 2k + 26= - 26 2h – 14k h – 7k STEP 3 : SOLVING (1) & (2) $7 \times 7h + k = 9$ 49h + 7k = 63 h - 7k = -13h - 7k = -1350h = 50h = 1 k = 2 C = (1, 2)STEP 4: C (1, 2), P(4,6) r = CP $= \sqrt{(1-4)^2 + (2-6)^2}$ = 25 = 5 STEP 5 : C(1, 2) , r = 5 $(x - h)^2 + (y - k)^2 = r^2$

SOLUTION P(4,1) STEP 1 : CP = CQC(h,k $CP^2 = CQ^2$ Q(-3, -6)R(-2,1) $(h - 4)^{2} + (k - 1)^{2} = (h + 3)^{2} + (k + 6)^{2}$ $h^{2} - 8h + 16 + k^{2} - 2k + 1 = h^{2} + 6h + 9 + k^{2} + 12k + 36$ -8h - 2k + 17 = 6h + 12k + 45-28 = 14h + 14k- 2 = h + k(1) STEP 2 : CP = CR $CP^2 = CR^2$ $(h - 4)^{2} + (k - 1)^{2} = (h + 2)^{2} + (k - 1)^{2}$ $h^{2} - 8h + 16 + k^{2} - 2k + 1 = h^{2} + 4h + 4 + k^{2} - 2k + 1$ -8h - 2k + 17 = 4h - 2k + 512 = 12hSTEP 3 : Solving (1) & (2) sub h = 1 in (1)k = -3 C = (1, -3)STEP 4: C (1, -3), P(4,1) r = CP = $\sqrt{(1-4)^2 + (-3-1)^2}$ $= \sqrt{9 + 16}$ = 5 STEP 5 : C(1, -3) , r = 5 $(x - h)^2 + (y - k)^2 = r^2$ $(x - 1)^2 + (y + 3)^2 = 25$ $x^2 - 2x + 1 + y^2 + 6y + 9 = 25$ $x^2 + y^2 - 2x + 6y - 15 = 0$ Equation of circle

05. Find equation of circle passing through (4 , 1) ; (6 , 5) & whose center lies on 4x + y = 16 SOLUTION

STEP 1 :						P(4,1	
Since C(h , k) lies on 4x ·	+ y = 16					h,k)
4h -	+ k = 16		(1)		Q	9(6,5)	4x + y = 16
STEP 2 :							
CP = CQ							
$CP^2 = CQ$	2						
(h – 4) ² +	$(k - 1)^2 = (h - 6)$	2 + (k - 5) ²	2				
h ² – 8h +	$16 + k^2 - 2k + 1$	= h ²	² – 12h + 36 ·	+ k ² - 10	k + 25		
–8h	– 2k + 17	= -1	12h – 10k + 6	1			
	4h + 8k	= 44	4				
	h + 2k	= 11	I	(2)			
STEP 3 :	2 x 4h + k	= 16	8h +	2k =	32		
	h + 2k	= 11	h +	2k =	11		
			7h	=	21		
			h	=	3		
			k	=	4	$C \equiv (3, 4)$	
STEP 4 :	C (3, 4), P(4 r = CP = $\sqrt{(3-4)^2}$						
	$= \sqrt{(3-4)^2} \\ = \sqrt{1+9} \\ = \sqrt{10}$	+ (4 – 1) ²					

STEP 5: C(3, 4), r =
$$\sqrt{10}$$

(x - h)² + (y - k)² = r²
(x - 3)² + (y - 4)² = 10
x² - 6x + 9 + y² - 8y + 16 = 10
x² + y² - 6x - 8y + 15 = 0 Equation of circle

06. Find equation of circle passing through (1, -4); (5, 2) & whose center lies on x - 2y + 9 = 0SOLUTION

SIEP 1:
Since C(h, k) lies on x - 2y + 9 = 0
h - 2k = -9(1)
SIEP 2:
CP = CQ
CP = CQ
(h - 1)² + (k + 4)² = (h - 5)² + (k - 2)²
h² - 2h + 1 + k² + 8k + 16 = h² - 10h + 25 + k² - 4k + 4
-2h + 8k + 17 = -10h - 4k + 29
8h + 12k = 12
2h + 3k = 3(2)
SIEP 3:
2 x h - 2k = -9
2h - 4k = -18
2h + 3k = 3

$$\frac{2h + 3k = 3}{-7k = -21}$$

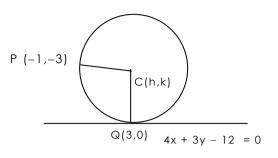
k = 3
subs in (1) h = -3 C = (-3, 3)
SIEP 4: C (-3, 3), P(1,-4)
r = CP
= $\sqrt{(-3 - 1)^{2} + (3 + 4)^{2}}$
= $\sqrt{(4 + 3)^{2}}$
= $\sqrt{(4 + 3)^{2}}$ = r²
(x + 3)² + (y - k)² = r²
(x + 3)² + (y - 3)² = 65
x² + 6x + 9 + y² - 6y + 9 = 65

 $x^2 + y^2 + 6x - 6y + 18 - 65 = 0$

Q7.

01. find equation of circle passing through (1, 9) & touching 3x + 4y + 6 = 0 at (-2, 0)

find equat	tion of circle passing through (1 , 9) & tou	ching 3x + 4y + 6 = 0 at (-2 , 0)
STEP 1 :		
CP = CQ		
$CP^2 = CQ^2$	2	P (1,9)
(h – 1) ² +	$(k - 9)^2 = (h + 2)^2 + (k - 0)^2$	C(h,k)
h ² – 2h + 1	$ + k^2 - 18k + 81 = h^2 + 4h + 4 + k^2$	
-2h -	-18k + 82 = 4h + 4	Q(-2,0) 3x + 4y + 6
	78 = 6h + 18k	
	h + 3k = 13	(1)
STEP 2 :		STEP 3 :
Slope of li	ne	Solving (1) & (2)
3x + 4y	$+6 = 0$: $m = -\frac{a}{b} = -\frac{3}{4}$	h + 3k = 13
∴ ^m cq	= <u>4</u> (Tangent – Radius)	4h - 3k = -8
Now ;	$m_{CQ} = \frac{y_2 - y_1}{x_2 - x_1}$	5h = 5 h = 1
		sub in (1) , k = 4
	$\frac{4}{3} = \frac{k-0}{h+2}$	C(1,4)
	4h + 8 = 3k	
	4h – 3k = – 8 (2)	D
STEP 4 :	r = CQ , $C(1,4)$, $Q(-2,0)$	
	$= \sqrt{(1+2)^2 + (4-0)^2}$	
	= 5	
STEP 5 :	C(1,4),r=5	
	$(x - h)^2 + (y - k)^2 = r^2$	
	$(x - 1)^2 + (y - 4)^2 = 25$	
	$x^2 - 2x + 1 + y^2 - 8y + 16 = 25$	
	$x^2 + y^2 - 2x - 8y + 17 - 25 = 0$	
	$x^2 + y^2 - 2x - 8y - 8 = 0$ E	quation of circle


= 0

02. find equation of circle passing through (-1, -3) & touching 4x + 3y - 12 = 0 at (3, 0)

SOLUTION

STEP 1 :

CP = CQ $CP^{2} = CQ^{2}$ $(h + 1)^{2} + (k + 3)^{2} = (h - 3)^{2} + (k - 0)^{2}$ $h^{2} + 2h + 1 + k^{2} + 6k + 9 = h^{2} - 6h + 9 + k^{2}$ 2h + 6k + 10 = -6h + 9 8h + 6k = -1(1)

Slope of line

$$4x + 3y - 12 = 0$$
 : $m = -\frac{a}{b} = -\frac{4}{3}$

$$\therefore \ \ ^{m}CQ = \frac{3}{4} \ \dots \ (Tangent - Radius)$$

^mcq

Now ;

$$\frac{x_2 - x_1}{x_2 - x_1}$$

$$\frac{3}{4} = \frac{k - 0}{h - 3}$$

$$3h - 9 = 4k$$

$$3h - 4k = 9 \dots (2)$$

y2 - y1

STEP 3: Solving (1) & (2) (1) x 2 16h + 12k = -2 (2) x 3 9h - 12k = 27 25h = 25 h = 1 sub in (1) , k = $-\frac{3}{2}$ C (1, -3/2)

STEP 4: r = CQ , C(1,-3/2) , Q(3,0)
=
$$\sqrt{(1-3)^2 + (-3/2-0)^2}$$

= $\sqrt{4 + \frac{9}{4}}$ = $\sqrt{\frac{25}{4}}$ = $\frac{5}{2}$

$$\frac{\text{STEP 5}}{(x - h)^2} : C(1, -3/2), r = 5/2$$

$$(x - h)^2 + (y - k)^2 = r^2$$

$$(x - 1)^2 + (y + 3/2)^2 = 25/4$$

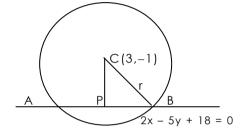
$$x^2 - 2x + 1 + y^2 + 3y + \frac{9}{4} = \frac{25}{4}$$

$$\frac{4x^2 - 8x + 4 + 4y^2 + 12y + 9}{4} = \frac{25}{4}$$

$$4x^2 + 4y^2 - 8x + 12y + 13 - 25 = 0$$

$$4x^2 + 4y^2 - 8x + 12y - 12 = 0$$

$$x^2 + y^2 - 2x + 3y - 3 = 0$$
 Equation of circle


Q8.

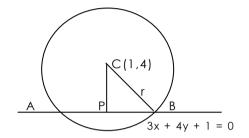
01. Find equation of circle with center (3 , -1) and which cuts off a chord of length 6 on line 2x - 5y + 18 = 0

SOLUTION

STEP 1: AP = PB = 3 (\perp from the centre bisects the chord)

$$\frac{\text{STEP 2}:}{\text{CP}} \quad \text{CP} = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$
$$= \left| \frac{2(3) - 5(-1) + 18}{\sqrt{2^2 + 5^2}} \right|$$
$$= \left| \frac{6 + 5 + 18}{\sqrt{29}} \right|$$
$$= \left| \frac{29}{\sqrt{29}} \right|$$
$$\text{CP} = \sqrt{29}$$

STEP 3: In
$$\triangle$$
 CPB; CP² + PB² = r²
29 + 9 = r²
r² = 38
r = $\sqrt{38}$


02. Find equation of circle with center (1, 4) and which cuts off a chord of length 6 on line 3x + 4y + 1 = 0

SOLUTION

STEP 1: AP = PB = 3 (\perp from the centre bisects the chord)

STEP 2: CP =
$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

= $\left| \frac{3(1) + 4(4) + 1}{\sqrt{3^2 + 4^2}} \right|$
= $\left| \frac{3 + 16 + 1}{\sqrt{25}} \right|$
= $\left| \frac{20}{5} \right|$

CP = 4

STEP 3: In
$$\triangle$$
 CPB; CP² + PB² = r²
16 + 9 = r²
r² = 25
r = 5

03. Find the length of intercept made by circle $x^2 + y^2 - 2x - 8y - 8 = 0$ on the line 3x + 4y + 1 = 0

SOLUTION

STEP 1:
$$x^2 + y^2 - 2x - 8y - 8 = 0$$

On comparing with
 $x^2 + y^2 + 2gx + 2fy + c = 0$
 $2g = -2$; $2f = -8$
 $g = -1$; $f = -4$; $c = -8$
 $C = (-g, -f)$
 $r = \sqrt{g^2 + f^2 - c}$
 $\equiv (1, 4)$
 $r = 5$

STEP 2:
$$CP = \left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

 $= \left| \frac{3(1) + 4(4) + 1}{\sqrt{3^2 + 4^2}} \right|$
 $= \left| \frac{3 + 16 + 1}{\sqrt{25}} \right|$
 $= \left| \frac{20}{5} \right|$
 $CP = 4$

STEP 3: In
$$\triangle$$
 CPB; CP² + PB² = r²
16 + PB² = 25
PB² = 9
PB = 3

STEP 4: AB = 2(PB) = 6 (\perp from the centre bisects the chord)

04. Find the length of intercept made by circle $x^2 + y^2 - 6x + 4y - 12 = 0$ on the line 4x - 3y + 2 = 0

SOLUTION

STEP 1:

$$x^{2} + y^{2} - 6x + 4y - 12 = 0$$
On comparing with

$$x^{2} + y^{2} + 2gx + 2fy + c = 0$$

$$2g = -6; \quad 2f = 4$$

$$g = -3; \quad f = 2; \quad c = -12$$

$$C = (-g, -f) \qquad r = \sqrt{g^{2} + f^{2} - c}$$

$$= (3, -2) \qquad = \sqrt{9 + 4 + 12}$$

$$= 5$$

STEP 2: CP =
$$\left| \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}} \right|$$

= $\left| \frac{4(3) - 3(-2) + 2}{\sqrt{3^2 + 4^2}} \right|$
= $\left| \frac{12 + 6 + 2}{\sqrt{25}} \right|$
= $\left| \frac{20}{5} \right|$

STEP 3: In
$$\triangle$$
 CPB; CP² + PB² = r²
16 + PB² = 25
PB² = 9
PB = 3

CP = 4

STEP 4: AB = 2(PB) = 6 (\perp from the centre bisects the chord)

MARCH - 2017

Find equation of circle passing through point of intersection of the lines x + 3y = 0 and 2x - 7y = 0and whose centre is the point of intersection of the lines x + y + 1 = 0 and x - 2y + 4 = 0**SOLUTION**

> STEP 1 point of intersection of the lines x + 3y = 0 and 2x - 7y = 0 = (0,0)

STEP 2

point of intersection of the lines x + y + 1 = 0 and x - 2y + 4 = 0 = (-2, 1)

STEP 3

Centre of the circle is (-2,1) and circle passes through (0,0)

Radius r =
$$\sqrt{(-2 - 0)^2 + (1 - 0)^2}$$

= $\sqrt{4 + 1}$
= $\sqrt{5}$
STEP 4 Equation of the circle $(x - h)^2 + (y - k)^2 = r^2$
 $(x + 2)^2 + (y - 1)^2 = 5$
 $x^2 + y^2 + 4x - 2y = 0$